Sparsify and sweep: an efficient preconditioner for the Lippmann-Schwinger equation
نویسنده
چکیده
This paper presents an efficient preconditioner for the Lippmann-Schwinger equation that combines the ideas of the sparsifying and the sweeping preconditioners. Following first the idea of the sparsifying preconditioner, this new preconditioner starts by transforming the dense linear system of the Lippmann-Schwinger equation into a nearly sparse system. The key novelty is a newly designed perfectly matched layer (PML) stencil for the boundary degrees of freedoms. The resulting sparse system gives rise to fairly accurate solutions and hence can be viewed as an accurate discretization of the Helmholtz equation. This new PML stencil also paves the way for applying the moving PML sweeping preconditioner to invert the resulting sparse system approximately. When combined with the standard GMRES solver, this new preconditioner for the Lippmann-Schwinger equation takes only a few iterations to converge for both 2D and 3D problems, where the iteration numbers are almost independent of the frequency. To the best of our knowledge, this is the first method that achieves near-linear cost to solve the 3D Lippmann-Schwinger equation in high frequency cases.
منابع مشابه
Sparsifying Preconditioner for the Lippmann-Schwinger Equation
The Lippmann–Schwinger equation is an integral equation formulation for acoustic and electromagnetic scattering from an inhomogeneous medium and quantum scattering from a localized potential. We present the sparsifying preconditioner for accelerating the iterative solution of the Lippmann–Schwinger equation. This new preconditioner transforms the discretized Lippmann–Schwinger equation into spa...
متن کاملFast Alternating BiDirectional Preconditioner for the 2D High-Frequency Lippmann-Schwinger Equation
This paper presents a fast iterative solver for Lippmann-Schwinger equation for highfrequency waves scattered by a smooth medium with a compactly supported inhomogeneity. The solver is based on the sparsifying preconditioner [63] and a domain decomposition approach similar to the method of polarized traces [64]. The iterative solver has two levels, the outer level in which a sparsifying precond...
متن کاملThe rigged Hilbert space approach to the Lippmann - Schwinger equation . Part I
We exemplify the way the rigged Hilbert space deals with the Lippmann-Schwinger equation by way of the spherical shell potential. We explicitly construct the Lippmann-Schwinger bras and kets along with their energy representation, their time evolution and the rigged Hilbert spaces to which they belong. It will be concluded that the natural setting for the solutions of the Lippmann-Schwinger equ...
متن کاملThe Time Domain Lippmann-Schwinger Equation and Convolution Quadrature
We consider time domain acoustic scattering from a penetrable medium with a variable sound speed. This problem can be reduced to solving a time domain volume Lippmann-Schwinger integral equation. Using convolution quadrature in time and trigonometric collocation in space we can compute an approximate solution. We prove that the time domain Lippmann-Schwinger equation has a unique solution and p...
متن کاملInverse scattering theory: renormalization of the Lippmann-Schwinger equation for acoustic scattering in one dimension.
The most robust treatment of the inverse acoustic scattering problem is based on the reversion of the Born-Neumann series solution of the Lippmann-Schwinger equation. An important issue for this approach to inversion is the radius of convergence of the Born-Neumann series for Fredholm integral kernels, and especially for acoustic scattering for which the interaction depends on the square of the...
متن کامل